Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.


QTRS
  ↳ DirectTerminationProof

Q restricted rewrite system:
The TRS R consists of the following rules:

xor(x, F) → x
xor(x, neg(x)) → F
and(x, T) → x
and(x, F) → F
and(x, x) → x
and(xor(x, y), z) → xor(and(x, z), and(y, z))
xor(x, x) → F
impl(x, y) → xor(and(x, y), xor(x, T))
or(x, y) → xor(and(x, y), xor(x, y))
equiv(x, y) → xor(x, xor(y, T))
neg(x) → xor(x, T)

Q is empty.

We use [23] with the following order to prove termination.

Recursive path order with status [2].
Precedence:
neg1 > xor2 > F
neg1 > T
impl2 > and2 > xor2 > F
impl2 > T
or2 > and2 > xor2 > F
equiv2 > xor2 > F
equiv2 > T

Status:
trivial